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SUMMARY

The generation of induced pluripotent stem cells
(iPSCs) and induced neuronal cells (iNCs) from
somatic cells provides new avenues for basic
research and potential transplantation therapies
for neurological diseases. However, clinical applica-
tions must consider the risk of tumor formation by
iPSCs and the inability of iNCs to self-renew in
culture. Here we report the generation of induced
neural stem cells (iNSCs) from mouse and human
fibroblasts by direct reprogramming with a single
factor, Sox2. iNSCs express NSC markers and
resemble wild-type NSCs in their morphology, self-
renewal, ability to form neurospheres, and gene
expression profiles. Cloned iNSCs differentiate into
several types of mature neurons, as well as astro-
cytes andoligodendrocytes, indicatingmultipotency.
Implanted iNSCs can survive and integrate in mouse
brains and, unlike iPSC-derived NSCs, do not gen-
erate tumors. Thus, self-renewable and multipotent
iNSCs without tumorigenic potential can be gener-
ated directly from fibroblasts by reprogramming.

INTRODUCTION

After seminal studies that succeeded in reprogramming mouse

and human somatic cells to iPSCs (Takahashi et al., 2007; Taka-

hashi and Yamanaka, 2006; Yu et al., 2007), researchers have

taken great strides to improve reprogramming methods and to

apply the technology to the understanding and potential future

treatment of human diseases (Hanna et al., 2008; Hockemeyer

et al., 2008; Kaji et al., 2009; Kim et al., 2009; Okita et al.,

2008; Park et al., 2008a, 2008b; Shi et al., 2008; Stadtfeld

et al., 2008; Wernig et al., 2008; Woltjen et al., 2009; Yu et al.,

2009). A number of disease- and patient-specific iPSC lines

have been established, including those from patients with amyo-

trophic lateral sclerosis (Dimos et al., 2008), spinal muscular

atrophy (Ebert et al., 2009), Parkinson’s disease (Park et al.,
100 Cell Stem Cell 11, 100–109, July 6, 2012 ª2012 Elsevier Inc.
2008a; Soldner et al., 2011), schizophrenia (Brennand et al.,

2011), Huntington’s disease (Park et al., 2008a), and Alzheimer’s

disease (Israel et al., 2012). Furthermore, correction of genetic

mutations in disease-specific iPSCs can rescue phenotypes in

cultured cells (Soldner et al., 2011; Yusa et al., 2011) or in mouse

models of human diseases, such as sickle cell anemia (Hanna

et al., 2007). However, for successful therapeutic application,

iPSCs need to be efficiently differentiated into the desired cell

type. Moreover, pluripotent stem cells, including embryonic

stem cells (ESCs) and iPSCs, can form teratomas in vivo,

whereas multipotent, lineage-restricted stem cells, such as

hematopoietic stem cells and NSCs, do not (Fong et al., 2010;

Miura et al., 2009; Yamanaka, 2009). Thus, direct reprogram-

ming of somatic cells into multipotent, lineage-restricted stem

cells should complement iPSC technology and sidestep the diffi-

culty of differentiating iPSCs. It would also lower the risk of

immature teratoma formation after the transplantation of iPSC-

derived multipotent stem cells or their progeny as a result of

potential iPSC contamination or incomplete reprogramming.

Recently, transcription factors have been used to induce cell

fate change from one type of somatic cell to another in cell

cultures and in mice (Huang et al., 2011; Ieda et al., 2010; Sekiya

and Suzuki, 2011; Zhou et al., 2008). Mouse and human fibro-

blasts and other types of cells have been transdifferentiated

directly into postmitotic neurons with combinations of transcrip-

tion factors (Ambasudhan et al., 2011; Caiazzo et al., 2011; Kim

et al., 2011b; Marro et al., 2011; Pang et al., 2011; Qiang et al.,

2011; Son et al., 2011; Vierbuchen et al., 2010; Yoo et al.,

2011). iNCs have typical neuronal cell properties and exhibit

proper electrical function in culture. Although iNCs can be gener-

ated with relatively high efficiency (5%�20%), current protocols

generate a mixture of neuronal cells and other unknown types of

cells, limiting the direct use of iNCs in transplantation therapy.

The addition of neuronal fate-specifying factors to the repro-

gramming cocktail can influence the efficiency with which

a specific neuronal subtype can be generated (Caiazzo et al.,

2011; Son et al., 2011). However, this technology is limited by

the fact that iNCs are terminally differentiated and cannot self-

renew. Most recently, it has been reported that the combination

of three or more factors can reprogram mouse fibroblasts into

induced neural stem cells (iNSCs) with self-renewing ability

(Han et al., 2012; Kim et al., 2011a; Lujan et al., 2012; Sheng
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et al., 2012; Thier et al., 2012). Here, we present a novel method

for generating self-renewable, multipotent, neural lineage-

restricted, and nontumorigenic iNSCs from mouse and human

fibroblasts by direct reprogramming with one factor.

RESULTS

Generation and Characterization of iNSCs from Mouse
Fibroblasts
The protocol for generating iNSCs from mouse embryonic fibro-

blasts (MEFs) is shown in Figure S1A (available online). In

choosing the reprogramming factors, we considered five key

transcription factors that are important in NSC production, main-

tenance, and self-renewal: Sox2, Bmi-1, TLX, Hes1, and Oct1

(Graham et al., 2003; Jin et al., 2009; Kageyama et al., 2008;

Molofsky et al., 2003; Shi et al., 2004; Williams et al., 2004).

These factors were expressed individually or in different combi-

nations in MEFs by retroviral-mediated gene transduction. In

pilot studies, the morphology of MEFs cultured on gelatin-

coated plastic in NSC medium supplemented with growth

factors (epidermal growth factor [EGF] and fibroblast growth

factor [FGF2]) was unchanged for up to 4 weeks after transduc-

tion (Figures S1A [Step 1] and S1D). However, when MEFs were

cultured on glass coverslips coated with gelatin, their

morphology was drastically altered by retroviral Sox2 alone

(Figures 1A, 1B, S1A [Step 2], and S1B) or by Sox2 plus addi-

tional transcription factors. Because the combination of different

transcription factors with Sox2 did not enhance the reprogram-

ming efficiency, and in some cases yielded less encouraging

results, we focused on using Sox2 alone.

By 2–10 days after transduction with Sox2, transformed cells

had formed networks with colonies at the intersections of these

networks (Figures 1B, S1A [Step 2], and S1B), many of which

stained positive for Sox2 and Nestin (Figures 1C and S1C). The

efficiency of generating Sox2 and Nestin double-positive colo-

nies on gelatin-coated coverslips was 0.13% at day 8 postinfec-

tion and 0.52% at day 12 and was further enhanced to 0.96%

at day 8 by culturing infected cells on coverslips coated with

NSC-permissive substrates poly-L-ornithine and laminin (Table

S1; Lee et al., 2007). Furthermore, immunostaining of Sox2-

infected cells 14 days postinfection in NSC medium with

growth factors revealed the lack of MAP2-positive neurons,

GFAP-positive astrocytes, and O4-positive oligodendrocytes,

indicating that Sox2 transduction does not generate differenti-

ated neural cells directly (Table S2). Importantly, no morpholog-

ical changes and no Nestin- or Sox2-positive cells were

observed in MEFs not transduced with Sox2 (Figure 1D) or in

Sox2-transduced MEFs cultured on gelatin-coated plastic for

up to 4 weeks (Figure S1D). Furthermore, untransfected MEFs

did not stain positive for the differentiated cell markers MAP2,

GFAP, and O4 (Table S2).

Six to ten days after retroviral Sox2 transduction, cell mixtures

containing multiple colonies were collected and recultured to

promote cell proliferation and expansion (Figures 1E and S1A

[Step 3]). Five days later, Sox2-infected cells were released for

primary neurosphere culture in suspension to select for NSC-

like cells (Figures S1A [Step 4] and S1E). The primary neuro-

spheres were seeded, and cells with NSC-like morphology

grew gradually from adhered neurospheres (Figures S1A
[Step 5], S1F, and S1G). To further enrich reprogrammed NSC-

like cells, we repeated the neurosphere culture procedures twice

(Figure S1A [Steps 4 and 5]). NSC-like cells were then grown in

a monolayer for many generations to generate a homogenous

population of NSC-like cells (Figures 1F and S1A [Step 6]).

Reprogrammed NSC-like cells at passages 8 (Figure S1H), 11

(Figure 1G), and 28 (Figure 1H) had morphologies very similar

to those of wild-type mouse NSCs (Figures 1I and S1I). Similar

results were obtained from independent reprogramming experi-

ments with the same protocol (Figures S1J–S1L), demonstrating

the repeatability of this reprogramming method.

The reprogrammed mouse NSC-like cells expressed NSC

markers, including Sox2 and Nestin, similarly to the wild-type

mouse NSC line SCR029 (Figures 1J–1M), as well as Pax6

and BLBP (Figures S2A–S2D). Quantitative real-time RT-PCR

(qRT-PCR) confirmed that NSC-like cells expressed Sox2,

Nestin, Sox1, and Zbtb16 (Figure 1N); however, they did not

express pluripotency-related genes, such as Oct4, Nanog, and

Zfp42 (Figure 1O). In contrast, MEFs cultured in fibroblast or

NSC medium for up to 4 weeks did not show significant expres-

sion of Sox2, Nestin, Pax6, Zbtb16, or Msi1 (Figures S2E–S2H).

We next determined whether reprogrammed NSC-like cells had

silenced exogenous Sox2 expression and turned on endoge-

nous Sox2 expression by qRT-PCR (Figure S2I). Interestingly,

endogenous Sox2-specific qRT-PCR detected low levels of

endogenous Sox2 expression in reprogrammed NSC-like cells

at passage 7 and significant levels of exogenous Sox2 expres-

sion compared to wild-type NSCs. In contrast, reprogrammed

NSC-like cells at later passage had more comparable levels of

endogenous Sox2 expression to wild-type NSCs (Figure S2I),

suggesting that the endogenous Sox2 gene was gradually

turned on in reprogrammed NSC-like cells over continuous

passaging. Exogenous Sox2-specific qRT-PCR did not detect

a significant signal in either reprogrammed NSC-like cells at

passage 16 or in wild-type NSCs, consistent with silencing of

the retroviral Sox2 transgene in reprogrammed NSC-like cells

during continuous passaging (Figure S2I). Thus, the repro-

grammed NSC-like cells do not require the expression of exog-

enous Sox2 to maintain their NSC identity at later passages.

Methylation patterns of NSC (Sox2 and Nestin) and ESC

(Oct3/4) gene promoters were next analyzed in reprogrammed

NSC-like cells, wild-type NSCs, and MEFs at passages 12, 17,

and 2, respectively (Han et al., 2009; Imamura et al., 2006;

Western et al., 2010). Methylation analysis of bisulfite-treated

DNA revealed that the Oct3/4 promoter was hypermethylated

in all three cell lines, indicating the transcriptional silencing of

that gene (Figures S2J–S2L). In contrast, both the Sox2 and

Nestin promoters were hypomethylated in reprogrammed

NSC-like cells similarly to wild-type NSCs, indicating that these

genes are transcriptionally activated (Figures S2M–S2P).

Microarray studies demonstrated that the global gene expres-

sion pattern of the reprogrammed NSC-like cells was similar to

that of wild-type mouse NSCs but different from that of MEFs

(Figures S2Q and S2R). Furthermore, like wild-type mouse

NSCs, the reprogrammed NSC-like cells formed neurospheres

in suspension cultures and did so with similar efficiency (Figures

1P–1R). Taken together, these data strongly suggest that a single

factor plus NSC-permissive culture conditions can reprogram

MEFs into self-renewing NSCs that appear similar to wild-type
Cell Stem Cell 11, 100–109, July 6, 2012 ª2012 Elsevier Inc. 101



Figure 1. Generation and Characterization

of iNSCs from Mouse Fibroblasts

(A) Phase-contrast image of MEFs after overnight

treatment with Sox2 retrovirus in fibroblast

medium.

(B) Sox2-infected cells in NSC medium with

growth factors generate networks and colonies on

gelatin-coated glass coverslips by 8 days after

infection.

(C) Sox2-transformed colonies are positive for the

NSC markers Nestin and Sox2.

(D) Fibroblasts cultured in NSC medium with

growth factors but without Sox2 retroviral trans-

duction do not generate colonies or networks.

(E) Sox2-transduced cells after 11 days have

drastically different morphology from their fibro-

blast counterparts.

(F) After three rounds of neurosphere generation,

reprogrammed cells take on the characteristic

bipolar NSC morphology.

(G) After multiple passages as a monolayer, NSC-

like cells are a morphologically homogenous

population.

(H) Morphology of NSC-like cells stays the same

over prolonged passaging, and reprogrammed

cells can proliferate over 28 passages.

(I) The morphology of NSC-like cells is similar to

that of wild-type cortical-derived NSCs such as

the commercial cell line SCR029 (Millipore).

(J–M) For the miNSC-A21 cell line, expression of

Nestin and Sox2 is similar to that of brain-derived

wild-type NSCs as revealed by immunostaining.

(N and O) qRT-PCR reveals that miNSC-A21 ex-

press typical NSC markers (N) but do not express

pluripotency-related genes (O). Error bars denote

standard deviation of triplicate reactions.

(P–R) In suspension culture, miNSC-A21 gener-

ates neurospheres similar to wild-type NSCs

and with similar efficiency (n = 3). Values are

mean ± SD.

Scale bars represent 50 mm in (A), (D)–(I), and

(J)–(M) and 100 mm in (B), (C), (P), and (Q).

See also Figures S1 and S2 and Tables S1, S2,

and S4.
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NSCs at the transcriptional level and in forming neurospheres.

We therefore refer to them as mouse induced NSCs (miNSCs).

Multipotency of miNSCs in Culture
Under neuronal differentiation conditions involving removal of

growth factors from the NSC medium, miNSCs differentiated

into immature neurons (Tuj1-positive) at 1 week in culture simi-

larly to wild-type NSCs (Figures 2A and 2B) and mature neurons

(MAP2- and Tau-positive) at 2 weeks (Figures 2E–2H). At

4 weeks, miNSCs developed into MAP2-positive neurons with

extensive and complex neurites similar to those of mouse

primary neurons in culture (Figure 2I). At 14–28 days, miNSCs

differentiated into vGluT1-positive excitatory neurons (Figures

2J and S3E) and GABA-positive inhibitory neurons (Figure 2K).

Importantly, MAP2-positive mature neurons could be generated

from miNSCs at passages P11–P28 (Figures S3A–S3D) and

beyond. Thus, miNSCs have stable neurogenesis capability

during continuous passaging.

Immunostaining revealed robust GFAP-positive astrocytes

derived from both miNSCs and wild-type NSCs cultured for

7–22 days under various differentiation conditions (Figures 2C,

2D, and S3F). Importantly, the ability of miNSCs to generate

neurons and astrocytes was confirmed in different batches of

miNSCs (Figures S3G–S3L). Furthermore, miNSCs also devel-

oped into O4- and Olig2-positive oligodendrocytes (Figure 2L).

Thus, miNSCs are multipotent, being able to differentiate into

neurons, astrocytes, and oligodendrocytes.

To further confirm the multipotency of miNSCs, we subcloned

miNSC-A21 line at passage 13 when we observed stable NSC

gene expression and neuronal differentiation and tested the

multipotency of each clone. All five clones tested could differen-

tiate intoMAP2-positive neurons, GFAP-positive astrocytes, and

O4/Olig2 double-positive oligodendrocytes (Figures 2M–2U for

three clones). Thus, miNSCs are a population of truly multipotent

NSCs and are not a heterogenous population of different neural

progenitor cells.

Lastly, we determined the efficiency of neuronal and glial

differentiation in vitro at 14 days for two miNSC clones

(A21-B8 and A21-C1). We found a similar yield in neurons

(MAP2-positive cells normalized to DAPI-positive nuclei)

between the twomiNSC-A21 clones (clone B8, 67%± 5%; clone

C1, 59% ± 6%) and wild-type brain-derived NSCs (76% ± 6%).

However, we saw a higher percentage in astrocytes (GFAP-posi-

tive cells normalized to DAPI-positive nuclei) generated from

miNSC-A21 (clone B8, 25% ± 2%; clone C1, 18% ± 2%)

compared to wild-type brain-derived NSCs (6% ± 4%).

Functional Neurons Derived from miNSCs
Neurons derived from miNSCs, under a condition conducive

to primary neuron culture, expressed Synapsin with punctate

distribution, suggesting synaptic formation in vitro (Figures 3A

and 3B). Whole-cell patch-clamp recordings (Figure 3C)

revealed that miNSC-derived neurons had hyperpolarized

resting membrane potentials (–40 to –80 mV) (Figure 3D)

and membrane resistance properties (Figure 3E). Action

potentials could be elicited by depolarizing the membrane in

current-clamp mode (Figure 3F). Furthermore, in voltage-clamp

mode, both fast inactivating inward and outward currents,

which correspond to opening of voltage-dependent Na+ and
K+ channels, respectively, were recorded from miNSC-derived

neurons (Figure 3G). Thus, miNSC-derived neurons appear to

exhibit the functional membrane properties and activities of

normal neurons.

miNSCs Can Survive, Integrate, and Differentiate In Vivo
and Do Not Generate Tumors
We microinjected GFP-labeled miNSC neurospheres into the

cortex of P2–P3 wild-type pups. Immunostaining revealed that

miNSCs survived and differentiated into NeuN-positive neurons

with mature-looking dendritic spines (Figures 3H–3J), GFAP-

positive astrocytes (Figures 3K–3M), and Olig2-positive oligo-

dendrocytes (Figures 3N–3P) 5 days posttransplantation. Thus,

miNSCs are capable of differentiating into neurons, astrocytes,

and oligodendrocytes in vivo.

Because transplantation of iPSC-derived neurospheres into

mouse brains often results in teratoma formation, we also

assessed the ability of miNSCs to generate tumors or teratomas

in vivo (Yamanaka, 2009). Transplantation of miNSCs or

wild-type brain-derived NSCs into mouse brains did not

generate tumors; however, teratomas formed in more than

60% of mice transplanted with mouse iPSC-derived NSCs

(Table S3). The observation that miNSCs did not form tumors

in vivo in 28 separate hippocampal injections involving three

different miNSC-A21 subclones suggests thatmiNSCs have little

or no tumorigenic potential.

Generation and Characterization of iNSCs from Human
Fetal Fibroblasts
We generated human iNSCs (hiNSCs) from human fetal foreskin

fibroblasts (HFFs) by a similar protocol (Figure S1A), in which

mouse Sox2 was replaced with human SOX2 and repro-

grammed cells were cultured in human NSC (hNSC) culture

medium supplemented with human EGF and FGF2. During

reprogramming, themorphological changes in HFFswere similar

to those in mouse fibroblasts (compare Figures S4A–S4G

to Figures 1 and S1). Immunostaining revealed that within

5 days after SOX2 retroviral transduction, hiNSC colonies were

positive for SOX2 and NESTIN (Figure S4E). After three or four

rounds of neurosphere culture, hiNSCs had morphology

different from the original HFFs (Figures S4F and S4A) and

further passaging resulted in morphology similar to that of

wild-type NSCs derived from human iPSCs (Figures S4G and

S4H). hiNSCs did not express pluripotency-related genes as

determined by qRT-PCR (Figure S4I) and had neurosphere-

forming ability similar to that of NSCs derived from human iPSCs

(Figure S4J).

Multipotency of hiNSCs in Culture
At 2–4 weeks in culture under conditions that favor neuronal

differentiation (hNSC medium without growth factors in the

presence of WNT5A (100 ng/ml) or retinoic acid (1 mM) plus

forskolin (5 mM)), hiNSCs differentiated into immature neurons

(TUJ1-positive) and mature neurons (MAP2-positive) (Figures

4A–4D). At 4 weeks, hiNSCs developed into MAP2-positive

neurons with extensive and complex neurites (Figure 4E). Impor-

tantly, MAP2-positive neurons could be generated from

hiNSCs at various passages from P8 to P22, suggesting stable

neurogenic capacity of hiNSCs. Immunostaining revealed
Cell Stem Cell 11, 100–109, July 6, 2012 ª2012 Elsevier Inc. 103
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Figure 2. Multipotency of miNSCs In Vitro

(A and B) Like wild-type NSCs, miNSC-A21 can differentiate into Tuj1+ neurons and GFAP+ astrocytes by 7 days in culture after growth factor withdrawal.

(C and D) miNSC-A21 can robustly generate GFAP+ astrocytes by 14 days in vitro in the presence of BMP4 or FBS.
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Figure 3. miNSC-Derived Functional Neurons In Vitro and Multipotency of miNSCs In Vivo

(A and B) Neurons derived from subclones miNSC-A21-B3 or miNSC-A21-B6 at 14 days in culture express MAP2 (green) and Synapsin (red), a presynaptic

marker of mature neurons.

(C) A patched neuron derived from miNSC-A21-B3 at 17 days in culture.

(D and E) Whole-cell capacitance and membrane resistance of neurons derived from miNSC-A21 were determined from a transient 5 mV hyperpolarizing step

from a holding potential of –70 mV. Values are mean ± SEM.

(F) Current-clamp recordings of neurons derived from miNSC-A21 at –40 mV reveal action potentials with stepwise current injection.

(G) Voltage-clamp recordings of neurons derived from miNSC-A21 reveal both fast inactivating inward and outward currents indicating functional voltage-

dependent Na+ and K+ channels.

(H–P) GFP-labeledmiNSC-A21 were grown in suspension cultures for 1 day to generate small neurospheres and thenmicroinjected into the cortex of P2–P3wild-

type pups. Five days after transplantation, mouse brains were collected, fixed, sectioned, and immunostained.

(H–J) Immunostainings reveal that miNSC-A21 can differentiate into NeuN+ neurons (H and I) with mature-looking dendritic spines (J) in vivo.

(K–M) miNSC-A21 can also differentiate into GFAP+ astrocytes in vivo.

(N–P) miNSC-A21 can also differentiate into Olig2+ oligodendrocytes in vivo.

Scale bars represent 2 mm in (A) and (B) and 10 mm in (C) and (H)–(P).

See also Table S3.
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GFAP-positive astrocytes derived from two separate hiNSC

lines cultured for 14 days in the presence of 50 ng/ml BMP4

(Figures 4F and 4G). Furthermore, hiNSCs also developed into

O4- and OLIG2-positive oligodendrocytes (Figure 4H). Impor-

tantly, hiNSCs did not generate tumors upon transplantation

into mouse brains (Table S3). Thus, hiNSCs are multipotent,

being able todifferentiate into neurons, astrocytes, andoligoden-

drocytes, and may not harbor any tumorigenic potential in vivo.
(E) miNSC-A21 can generate mature-looking neurons and neuronal networks by

(F–H) Neurons derived from miNSC-A21 stain positive for the mature neuronal m

(I) miNSC-A21 can differentiate into mature arborized neurons by 28 days in vitro

(J and K) miNSC-A21 can differentiate into subtypes of neurons, including excita

(L) miNSC-A21 can generate O4+ and Olig2+ oligodendrocytes by 14 days in cul

(M–U) After 14 days in culture, subcloned lines B3 (M–O), B6 (P–R), and 4B (S–U

astrocytes (N, Q, T), and O4+/Olig2+ oligodendrocytes (O, R, U).

Scale bars represent 50 mm in (A), (B), (E), and (J); 25 mm in (C) and (D); 75 mm in

See also Figure S3.
DISCUSSION

The ability to reprogram somatic cells into self-renewable iNSCs

has major implications for regenerative medicine. iNSCs can

serve as a model system for unveiling disease pathogenesis,

for drug screening and toxicity tests, and ultimately for cell trans-

plantation therapies. Many studies have focused on generating

NSCs from pluripotent sources such as ESCs or iPSCs
14 days in culture without growth factors.

arkers MAP2 and Tau.

.

tory vGluT1+ neurons (J) and inhibitory GABA+ neurons (K).

ture.

) of miNSC-A21 can differentiate into MAP2+ mature neurons (M, P, S), GFAP+

(F)–(H); and 10 mm in (I)–(U).

Cell Stem Cell 11, 100–109, July 6, 2012 ª2012 Elsevier Inc. 105



Wnt5a, Day 28

A B

RA+FRK, Day 14

TUJ1/DAPI TUJ1

C
MAP2

D
TUJ1/MAP2

RA+FRK, Day 14 RA+FRK, Day 14

TUJ1/MAP2 GFAP GFAP O4/OLIG2

No GF, Day 28

E F

BMP4, Day 14

G H

BMP4, Day 14 No GF, Day 42

hiNSC-R2 hiNSC-R2 hiNSC-R2 hiNSC-R2

hiNSC-R2 hiNSC-R2 hiNSC-R1 hiNSC-R2

Figure 4. Multipotency of hiNSCs In Vitro

(A) hiNSCs can differentiate into TUJ1+ immature neurons in the presence of the signaling protein WNT5A by 28 days in culture.

(B) The addition of retinoic acid (RA) and forskolin (FRK) to neuronal differentiation conditions pushed hiNSCs to differentiate into TUJ1+ neurons by 14 days

in vitro.

(C and D) hiNSCs can generate TUJ1+/MAP2+ neurons by 14 days in the presence of RA and FRK.

(E) hiNSCs can generate mature-looking neurons that are MAP2+ by 28 days in vitro in hNSC medium without growth factors.

(F) hiNSCs can also generate GFAP+ astrocytes in the presence of BMP4 by 14 days.

(G) A separate hiNSC line can also robustly generate GFAP+ astrocytes at 14 days in vitro.

(H) hiNSCs can generate O4+/OLIG2+ oligodendrocytes by 40 days in culture in hNSC medium lacking growth factors.

Scale bars represent 20 mm in (A)–(D) and 10 mm in (E)–(H).

See also Figure S4.
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(Hochedlinger and Plath, 2009; Yamanaka, 2009). However,

these methods are plagued by ethical and practical issues,

such as the origin of ESCs and the tendency for teratoma forma-

tion of cells derived from iPSCs (Fong et al., 2010; Miura et al.,

2009; Yamanaka, 2009). Interestingly, transplantation of Sox2-

reprogrammed iNSCs into mouse brains does not generate

tumors, making iNSCs more attractive than NSCs derived from

iPSCs. iNCs can be generated from fibroblasts and other

somatic cell sources (Ambasudhan et al., 2011; Caiazzo et al.,

2011; Kim et al., 2011b; Marro et al., 2011; Pang et al., 2011;

Qiang et al., 2011; Son et al., 2011; Vierbuchen et al., 2010;

Yoo et al., 2011), but iNCs are terminally differentiated and

restricted to the subtypes of neurons they can generate. Having

a patient-derived population of multipotent iNSCs would bypass

some of the disadvantages of pluripotent and terminally differen-

tiated cell populations. Thus, direct reprogramming of somatic

cells into self-renewable and multipotent iNSCs should not

only complement the iPSC and iNC technologies but also

sidestep their shortcomings.

It has recently been reported that the four Yamanaka repro-

gramming factors in combination with NSC-permissive culture

conditions can reprogram fibroblasts to induced neural progen-

itors (iNPCs) that can generate multiple neuronal cell types as

well as astrocytes (Kim et al., 2011a). However, these iNPCs

can self-renew for only 3–5 passages in culture and have not

been shown to differentiate into oligodendrocytes. In a separate

study, a combination of nine factors reprogramed Sertoli cells
106 Cell Stem Cell 11, 100–109, July 6, 2012 ª2012 Elsevier Inc.
into iNSCs (Sheng et al., 2012). However, exogenous expres-

sion of eight out of the nine factors was not silenced even

after multiple passages, raising the question of whether these

iNSCs would revert back to their original state without constant

overexpression of those factors. It also has been reported

that three factors, Brn2, Sox2, and FoxG1, can reprogram

mouse fibroblasts to tripotent, self-renewing iNPCs (Lujan

et al., 2012). However, when the authors attempted to generate

iNPCs with only two factors, they found that Sox2 and FoxG1

generated only bipotent iNPCs and that the combination of

FoxG1- and Brn2-generated tripotent iNPCs were unable to

form mature and functional neurons in vitro. Interestingly, the

three-factor-reprogrammed iNPCs could generate oligodendro-

cytes in vivo although it was not tested for generation of

neurons or astrocytes. Most recently, two studies have shown

that the combinations of Sox2, Klf4, and c-Myc or Brn4,

Sox2, Klf4, c-Myc, and E47/Tcf3 can reprogram mouse fibro-

blasts into iNSCs (Thier et al., 2012; Han et al., 2012). Although

these studies do show that iNSCs can self-renew, generate

functional neurons in vitro, and integrate in vivo, both repro-

gramming methods require overexpression of the potent

c-Myc oncogene, which has been reported to be a cause of

brain tumorigenesis from transplanted iPSC-derived NSCs

(Okita et al., 2008).

The studies mentioned above are in line with our findings

that mouse fibroblasts can be directly reprogrammed into iNSCs

that exhibit typical NSC properties and differentiation abilities
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in vitro and in vivo. However, our iNSC reprogramming protocol

is advantageous because it requires a single factor to generate

tripotent iNSCs from both mouse and human fibroblasts. The

miNSCs described here can be passaged more than 40 times,

can generate functional neurons with synaptic connections

in vitro, and can survive, integrate, and be multipotent in vivo

without tumor formation. Furthermore, our results show that our

miNSCs are a homogeneous tripotent population, rather than

a heterogenous population of different neural progenitor cells.

Additionally, retroviral expression of Sox2 in miNSCs is silenced

at later passage, suggesting that Sox2-reprogrammed miNSCs

have turned on endogenous expression of NSC genes and can

maintain a stable cell fate. Finally, our SOX2 reprogramming

protocol can reprogram human fibroblasts into hiNSCs that

express the typical NSC markers, can self-renew over 20

passages, can generate neurospheres comparable to NSCs

derived from human iPSCs, and are tripotent in vitro.

Sox2 functions as a master regulator gene for NSC identity

and maintenance, as shown by the fact that knocking down

Sox2 expression leads to immediate cell cycle exit and terminal

differentiation of NSCs (Bylund et al., 2003; Graham et al., 2003).

Thus, it is conceivable that under conditions conducive to NSC

expansion, including the presence of growth factors and proper

surface and substrates, overexpression of Sox2 can reprogram

fibroblasts tomultipotent NSCs. If one factor can generate amul-

tipotent population of NSCs from somatic cells, then certain

combinations of more lineage-defined factors may generate

subtype-specific NSCs, such as motor neuron, dopaminergic

neuron, oligodendrocyte, or astrocyte progenitors. Overexpres-

sion of specific transcription factors such as Lmx1a in combina-

tion with extrinsic factors can bias NSCs toward differentiation

into dopaminergic neurons that constitute 75%–90% of the total

neuronal cell population (Panman et al., 2011). Thus, Sox2 might

be used in combination with such factors to create neural

progenitors that can develop into subtype-specific neurons,

which would be invaluable for mechanistic studies, drug

screening, and potential cell therapies for different neurodegen-

erative diseases.

EXPERIMENTAL PROCEDURES

Generation of iNSCs from Mouse and Human Fibroblasts

MEFswere isolated fromwild-type E18 embryos, and 7.53 103 to 43 105 cells

were transduced at passages 1–3 with pMX-Sox2 retrovirus to induce miNSC

reprogramming. Sox2-transformed MEFs were cultured in NSC medium

supplemented with EGF and FGF2, and NSC-like cells were selected during

three rounds of neurosphere suspensions. NSC-like cells were further

enriched by monolayer passaging and then characterized for their in vitro

and in vivo properties. 7.5 3 103 HFFs at passages 5–8 were transduced

with human SOX2 retrovirus to generate hiNSCs by a similar reprogramming

procedure. All procedures were approved by the Gladstone Institutes and

the University of California, San Francisco, Animal Care and Use Committees.

Detailed methods, including iNSC reprogramming protocol, in vitro character-

ization and differentiation, immunostaining, qRT-PCR, microarray analysis,

bisulfite sequencing, electrophysiology, transplantation, and tumorigenesis

studies, can be found in Supplemental Information.
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